

V Semester

Course 15 A: IoT Applications Development and Programming

Theory 03 hours / Week Credits -3

Learning Objectives:

To enable students to develop IoT solutions for real-world problems

Learning Outcomes: On successful completion of the course, students will be able to

- 1. Understand the Basic Concepts of Internet of Things
- 2. Learn various Sensors and their associative protocols
- 3. Learn the Single Board Computers for development of IoT
- 4. Build the IoT devices with the Node-RED without Complex coding
- 5. Develop various IoT real-time applications

UNIT-I

Overview of the Internet of Things (IoT) and Sensors: Sensors - Energy-based, Signal Output, Mode of Operation, Electronic Sensors. Connectivity - Bluetooth, Zigbee, Wi-Fi, LoRa, Wired Communication. Machine Intelligence, Active Management, Sensor Fusion, Smart Devices- Human-Computer Interaction, Context Awareness, Actuators, IoT and Smart City Applications- Automobile Sensors, Smart Home Sensors, Smart Transportation Sensors.

UNIT-II

IoT Sensors and Their Interfacing Protocols: Vision and Imaging Sensors- Line Scan Cameras, 3D Depth Cameras, **Sensors That Measure Temperature-**Thermocouples, Resistance Temperature Detector (RTD), Temperature Thermistor Sensors, Semiconductor Temperature Sensors, Radiation Sensors; Proximity Sensors, Pressure Sensors, Position Sensors, Photoelectric Sensors, Particle Sensors, Types of Particle Sensors-Metal Detectors, Level Sensors, Leak Detectors, Humidity Sensors, Gas and Chemical Sensors, Gas Detectors, Carbon Monoxide (MQ7) Detectors, Flame Detectors, **Sensor Communication Protocols**

UNIT-III

Programming Single Board Computers: Arduino Programming, Raspberry Pi-Basic functionality of Raspberry Pi B+ board, setting up the board, configuration and use, Basics of Linux and its use, Introduction to Raspberry Pi GPIO Access, Interfacing DHT, Interfacing Picamto Raspberry Pi zero w, Pi Camera Specifications, Pi Camera Access, Interfacing PIR Sensor **Python:** File Concepts, Spreadsheet Concepts, Communication Concepts, Wired and WirelessProgramming Concepts

UNIT-IV

Node-RED: Node-RED Features, Installation of Node-RED, Node-RED Architecture, Node-RED Flow Editor, Basic Function Nodes, Node-RED Library, Node-RED Applications; MQTT Protocols, Google Sheets Programming (gspread), Firebase Programming, Matplotlib- Getting Started, Bar Graphs, Scatter Plot, Spectrum Representation, Coherence of Two Signals, Cross- Correlation Graph, Autocorreleation Graph, Changing Figure Size in Different Units, Scale Pie Charts, Style Sheets-FiveThirtyEight Style Sheet, Solarized Light Style Sheet.

UNIT-V

Wireless Connectivity in IoT: Introduction, Low-Power Wide-Area Networks (LPWANs),RFID Protocol, XBEE Radios with Arduino, Bluetooth with Arduino, Arduino with a GSMModem, Arduino with Firebase Cloud Connectivity

The Internet of Things through the Raspberry Pi: Introduction, Cluster Computing with Raspberry Pi Zero W-Message Passing Interface (MPI), Networking with RP is for Simple MPI Scripts, Simple MPI Programming

Text Book(s)

- 1. **Internet of Things Using Single Board Computers**, *G. R. Kanagachidambaresan*, Apress, 2022.
- 2. Practical Node-RED Programming, Taiji Hagino, Packt Publishing, 2021

Reference Books

- 1. Internet of Things Programming Projects: Build modern IoT solutions with the Raspberry Pi 3 and Python, Colin Dow, Packt Publishing, 2021
- 2. Programming the Internet of Things: An Introduction to Building Integrated, Device-to-Cloud IoT Solutions, *Andy King*, O'Reilly Media, 2021

SUGGESTED CO-CURRICULAR ACTIVITIES & EVALUATION METHODS:

Unit 1: Activity: Case Study Presentation on Smart City IoT realization

Evaluation Method: Content knowledge, organization, clarity, presentation skills, visualaids, audience engagement

Unit 2: Activity: Poster Presentation for various kinds of Sensors

Evaluation Method: Creative & informative posters or infographics on Sensors

Unit 3: Activity: Hands-on Lab using RPi.

Evaluation Method: Lab Performance and Correctness of solution Implementation

Unit 4: Activity: Hands-on Lab Activity on Node-RED

Evaluation Method: Lab Performance and Correctness of solution Implementation.

Unit 5: Activity: Guest Lecture or Expert talk on Cloud based IoT platforms

Evaluation Method: Active Participation, Post Talk report presentation

V Semester

Course 15 A: IoT Applications Development and Programming

Credits -1

List of Experiments:

- 1. Write a program to switch light on when the input is 1 and switch the light off when the input is 0 using Raspberry pi
- 2. Install Node-RED and Flow-based Programming Development Environment
- 3. Create Basic Flows with Major Nodes
- 4. Develop a Node-Red Flow for various Case Studies
- 5. Implement Node-RED in the Cloud Calling a Web API from Node-RED
- 6. Create a To Do Application with Node-RED Handling Sensor Data on the Raspberry Pi
- 7. Develop a Dashboard with various 2D Graphs with Matplotlib
- 8. Install MySQL database in Raspberry pi.
- 9. Write a program to work with basic MySQL queries by fetching data from database in Raspberry pi.
- 10. Arduino with Firebase Cloud Connectivity
- 11. Visualize Data by Creating a Server-side Application in the Firebase